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ABSTRACT 

We prove that, given a countable group G, the set of countable structures 
(for a suitable language L) /gG whose automorphism group is isomorphic 
to G is a complete coanalytic set and if G ~ H then/-¢G is Borel insep- 
arable from b/H. We give also a model theoretic interpretation of this 
result. We prove, in contrast, that the set of countable structures for L 
whose automorphism group is isomorphic to Zp N, p a prime number, is 
II~ &E~-complete. 

I n t r o d u c t i o n  

This  p a p e r  is devo ted  to the  s t u d y  of those  classes of countable  s t ruc tu res  (for 

a given coun tab le  language  L) charac te r i sed  by shar ing a given group of au to-  

morph i sms .  

T h e  set  X L  of (codes of) s t ruc tu res  for L wi th  universe N is a Pol ish space.  For  

G a g roup  let  t / c  = {x E X L  I Aut (A~)  ~_ G} be the  set of countab le  s t ruc tu res  

for L whose a u t o m o r p h i s m  group is i somorphic  to G. 

Let  us consider  first the  case when G is countable .  If the  language  L is very 

s imple ,  L/c can  be  very s imple  as well. For  example ,  if L is e m p t y  or it  consists  

of one u n a r y  re la t ion  symbol ,  then  e v e r y / ~ c  is empty.  On the  o the r  h a n d  we 

prove tha t ,  as soon as the  language  becomes  reasonably  rich, the  sets L/c are  

qu i te  compl ica ted .  
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THEOREM: Let L be a language containing infinitely many unary function sym- 

bols or a function or relation symbol of arity at least 2. Then, for every countable 

group G, the set LIG is II~-complete in XL.  

This result cannot be extended to uncountable groups. We see in fact that  the 

following holds. 

1 1 THEOREM: Let L be as above. Then, for any prime number p, Ltz~ is IIl&~, 1- 

complete, where III&E~ is the class of all intersections of a coanalytic and an 

analytic set. 

The first theorem stated gives us a family of pairwise disjoint complete 

coanalytic sets indexed by countable groups up to isomorphism. This family 

turns out to be very entangled. More precisely, we have the following result. 

THEOREM: Let L be as above. I f  G and H are countable groups, with G 7~ H,  

then blc and lAB are Borel inseparable. 

This theorem can be rephrased by saying that,  if B is a Borel subset of XL 

containing /AC, then for every other countable group H there is an element of 

UH which belongs to B. This overspill property can be exploited, using the 

correspondence between invariant Borel subsets of XL and L~l~-sentences, to 

obtain the following model theoretic interpretation of the preceding result. 

THEOREM: Let L be as above. Let G be a countable group and suppose ~ is 

an L ~ , - s e n t e n c e  satisfied by all countable structures for L whose automorphism 

group is isomorphic to G. Then for every countable group H there is a countable 

structure for L whose automorphism group is isomorphic to H satisfying a. 

If L = {R}, /7  a binary relation symbol, the preceding theorems still hold when 

we confine our attention to the class of countable graphs. 

To obtain these results a concept which turns out to be a very powerful tool is 

that  of a group tree. These are trees such that  every level carries the structure 

of a group; they have long been used in mathematical logic for various purposes: 

see, for instance, [Sh76], [Ma81], [La85], [Mo93], [So95] (the terminology group 

tree is taken from [Ma811 and [So95]). 

In this paper' we develop a construction similar to the one used in [Ma81, ap- 

pendix] and [Mo93] but  in a mor e general context (we shall recover that  one later 

dealing with a special case); we shall assign, in a Borel way, to each descriptive 

tree T a group tree ST a,  depending on a fixed countable group G. Each level 

Lev~(ST a)  will be a group isomorphic to a free sum of copies of G, the number 



Vol. 117, 2000 COUNTABLE STRUCTURES 107 

of summands  - -  finite or countably infinite - -  being equal to the cardinality of 

Lev,~(T). 

In the spirit of this paper  the work of [Mo93] is particularly interesting. Indeed, 

while that  paper  deals with recursive model theory, several arguments work in a 

classical descriptive set theoretic context too. 

So, if L is a countable language as above and X L  is the Polish space of (codes 

for) countable structures for L, we deduce from there that  the set of non-rigid 

structures is complete analytic (a special case of the first theorem stated above) 

and we can also obtain a proof in ZFC that  the isomorphism relation in X L  is 

complete analytic using just methods of classical descriptive set theory. For a 

proof of this fact using effective descriptive set theory see [FS89]; for a proof 

using classical descriptive set theory in ZFC+E~-determinacy see [Ke95, 27.D]. 

Another classical type proof in ZFC is due to R. Dougherty. 

We begin stating some basic properties of the structures we shall be interested 

in. 

In the second section we describe the construction of our group trees ST a and 

prove the main results; it will be more convenient to prove them in a slightly 

different order from the one they were stated above. 

In the last section we deal with the uncountable case, working with the groups 

Zp N, p a prime number. 

ACKNOWLEDGEMENT: We wish to thank R. Dougherty, G. Hjorth, A. Marcone 

and S. Solecki for their important  help and suggestions. In particular A. Marcone 

helped us in clearing the presentation of the main construction, which is now more 

perspicuous than in an earlier draft of the paper. 

1. S o m e  algebraic preliminaries 

Let S be a semigroup for which some mapping I 1: S - - ~  N is defined and which 

contains a family {ei}i6N of elements and such that  

(1) Vm E N levi -- m; 

(2) Vm, n E N emen = emin(m,n) ; 

(3) W , y  E S Ixyl = min(Ixl, lYl); 
(4) Vx E S Vm E N ( x ~  ---- x ~ Ixl _< m); 
(5) Vx E S Vm E N x e m  = e m x .  

The function] [ will also be called rank in the sequel. 

For x,  y E S define x ~ y ¢==~ x = el~lY and x ~ y ¢=~ x ~ y A x ~ y. 
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LEMMA 1: Vx, y E S (x ~ y -: ;- 3 m  E N x = emy). 

Proof: T h e  fo rward  i m p l i c a t i o n  is i m m e d i a t e .  So a s s u m e  3rn E N x = emy. B y  

(3) a n d  (1) I x] < m so, us ing  (4), (5) a n d  (2), x = el~lemY = elxlY. 

LEMMA 2: ~ is a partial order .  

Proof: B y  (5) a n d  (4), Vx E S el~lx = xel~ I = x whence  x -4 x,  p r o v i n g  

ref lexivi ty .  A s s u m e  now x ~_ y ~_ z, t h a t  is x = el~lY A y = elylZ; th i s  imp l i e s  

x = emin(lxhlyl)Z a n d  x ___ z, p ro v in g  t r ans i t i v i t y .  F i n a l l y  a s s u m e  x -4 y --4 x,  wh ich  

m e a n s  x = el~lY A y = eMx.  S u p p o s e  }xl <_ lY} ( the  case  lY} <- Ixl is s y m m e t r i c ) .  

W e  have  t h u s  y = emin(lxl,lyl)Y = el~lelylX --  el~lX --  x a n d  a n t i s y m m e t r y  is 

p roved .  

LEMMA 3: VX, y E S (x -4 y ~ Ixl < ly[). 

Proof: L e t  x -4 y. T h e n  x = elxlY. T h e  r e l a t i o n  ]y] < Ixl is i m p o s s i b l e ,  s ince  

(4), (5) a n d  (2) w o u l d  t h e n  i m p l y  x = elxlelylY = elylY = y. 

LEMMA 4: VX, y, z, t E S (x -z. y A z -:4_ t ::> x z  -4 yt). 

Proof." W e  have  x = el~lY a n d  z = el,it. So x z  = emin(l~l,l,i)yt -< yt. 

W e  t u r n  now to  a m o d e l  P ( S )  = (S, ( f~ )~es ) ,  where ,  for a E S,  f~  is t h e  

u n a r y  f u n c t i o n  de f ined  by  Vx E S f~  (x) = (~x. 

LEMMA 5: Let  qo: P ( S )  ---+ P ( S )  be an  automorphism.  T h e n  Vx, y E S (x -4 
y . = .  < 

Proof: W e  have  

x ~ y c=~ 3 m  E N x = e , , y  ,,t---> 

, = ,  3rn N =  (emy) = em (y) *=* 

*=*  ± 

LEMMA 6: Let  ~o: P ( S )  ~ P ( S )  be an  automorphism.  Then  there exists a 

strictly increasing cha in  a o  -< c~1 -< - - -  -4 a n  -4 " -  o f  elements  o f  S such that  

Vx  E S V m  _> Ixl ~o(:~) = xo~,-,,. 

Proof: A s s u m e  m _> Ixl. B y  (4), ~o(x) = ~o(xem) = x~(em) .  Since  (1) a n d  (2) 

i m p l y  Vh, k E N (eh -4 ek ~ h < k), us ing  L e m m a  5 we ge t  qo(e0) -4 ~o(el) -4 

• .-  -4 ~ (e , , )  -~ . . .  I t  is e n o u g h  to  p u t  Vh E N c~u = ~o(eu). 
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LEMMA 7: Let  9~: P ( S )  

Ixl. 

COUNTABLE STRUCTURES 109 

) P ( S )  be an automorphism.  Then Vx E S I~(x)l = 

Proof: By L e m m a  6, let c~0 -< (~1 -~ " ' '  -¢: O~n -<: " ' "  be a str ict ly increasing chain 

of e lements  of S such tha t  Vx E S Vm _> Ix] ~(x)  = x~,~. By L e m m a  3 we have 

la0[ < It 'll < ' "  < ] ~ I  < " "  and this implies Vn E N I ~ [  > n. So, for m > Ixl, 

we have lain] > m > Ix I and thus I~(x)] = Ixaml = [x]. 

LEMMA 8: Let  so  -~ a l  -< . . .  -< a~ -< . . .  be a s tr ic t ly  increasing chain in 

S. Then  Vx E S Vn > [x[ Xan = xal~ I and, defining Vx E S 9~(x) = Xal~ I, 

P(S) p(s)  is a morphism. 

Proo~ We have, as before, Vn E N I O l n I  __> n. Let x E S and let k E N with  

Ixl < k. Thus  [~kl > I(~lxll-7 IxI • Since ~lx[-< c~k we have C~lx I --el~l~ll~k whence 

XC~l~ I = Xel~t~ll~k = x~k.  
We prove now tha t  the function ~: P ( S )  ) P ( S )  defined by Vx E S y3(x) = 

xc~l~ I is a morphism.  Assume ~ , x  E S. Recalling tha t  I/3xl < Ixl, by the first 

pa r t  of the  proof  we have ~(Zx)  =/3xc~lZ~ I =/3X(~lx I = / 3 ~ ( x ) .  

Remark:  (S, _-Z) is a forest, where Vn E N Lev~(S)  = {x E S I]xl = n}. Indeed,  

for x E Lev~(S)  and m < n, x has exact ly  one predecessor in Levm(S ) ,  namely  

emX. 

So, adding a c o m m o n  root,  we can view S as a tree in the descript ive set 

theoret ic  meaning.  If  S is countable  we can thus identify [S] wi th  a closed subset  

of the  Baire  space N N. By L e m m a s  5 and 7, every a u t o m o r p h i s m  of P ( S )  induces 

an i somet ry  of ([S], d) where, for ~ , r /E  [S], d(~, ~/) = 2 - n - l ,  i f~  ¢ ~? and n is the 

first level where ~ and , /differ .  

2. T h e  m a i n  c o n s t r u c t i o n  

Let  now G be a countable  group. To each T E Tr we associate  a semigroup ST G 

(denoted ST  in the sequel, if no ambigui ty  arises) via genera t ing  e lements  and  

defining relations. Not ing that ,  for each 9 E G, T × {9} is a tree isomorphic  

to T,  let I = T x G and consider a set of new elements  E -- {ek}keN, where  

Vk, k '  E N (k ¢ k '  =v e k ¢  ek,). Let  I U E be the set of genera tors  for ST. 
T h e  relat ions between the  generators  of the semigroup are the  following: 

(a) V3', ~/' E I (length(~,) < length(~;') ~ 3'7' = ~'(~/' [ length(")')) A ~"3' = 

('7' I length(7))~) ;  

(b) V~ E T Vg,9'  E G (~ ,g ) (~ ,g ' )  = (c~,gg'); 

(c) Vm,  n E N emen -- emin(m,n); 
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(d) VV E I Vn E N env = v e n  = V F min( leng th(v) ,n ) ;  

(e)  ~/ot E T (or, 1G) = elength(a ). 

Remark: The  last condit ion on the generators  kills immedia te ly  the copy 

T × { l e }  o f T ,  forcing each element in L e v , ( T ) ,  for n E N, to be  equal to e,~. So 

if we restr ict  ourselves to the G~ set Tr* = {T E Tr [ Vn E N 3 a  E N n a E T},  

we can avoid the  use of the  set E = {ek}keN, delet ing (e) and subs t i tu t ing  (c) 

and (d) wi th  

(c') Vm, n E N (m <_ n ==> Va E Levm(T)  Y/3 E Lev,~(T) ( a , l ~ ) ( / 3 , 1 G )  = 

1G)); 
(d')  V V E I Vn E N Va E Lev~(T)  (a,  l v )V  = V(a, 1G) = V [ m in ( l eng th (v ) , n )  

respectively.  Notice tha t  the  relat ion (c') identifies all the elements  in the  same  

level of T × { l v } .  

This  is an equivalent  construct ion,  allowing us to get the  same  results  as in 

the  sequel. 

Define now the rank ] l: ST ~ 1~. For generators  let Vk E N V V E I (]ek] = 

k A I v I  = length(v)) .  If  t = /31"'" fir E ST, with /3j E I U E ,  define It I = 

min ( l f l l [ , . . - ,  [flrl)- Notice t ha t  this is well defined, being independent  of the  

choice of the  word represent ing t, since the use of any one of the above relat ions 

does not change the  m i n i m u m  of the ranks  of the  generators  involved. 

Definition: Let t = ]~1"'" fir E ST, with/3j  E I U E.  The  expression i l l " ' "  fir is 

a c a n o n i c a l  f o r m  for t if 

• IZ l l  . . . . .  IZ l : Itl,  
• no subs t r ing  of the forms (a ,  l v )  and (a,  g ) (a ,  g ' )  occurs in/31 "'" fir, 

• ei ther  no element  of {ek}keN occurs in j31 "" /3 r  or r = 1 A 3k E N j31 = ek. 

LEMMA 9: Eve ry  element of ST has exactly one canonical form. 

Proof: Let  t = ~1 ""~3r E ST, with ~j E I U E.  If ~1" ' "  fir does not  contain  

e lements  of I ,  then  t = /31.../3r = ebl""eb~ = emin(bl ..... b~)" Otherwise  let 

51- . .  6p be  the  expression obta ined  f r o m / 3 1 . - ,  fir af ter  delet ing all occurrences  

of e lements  f rom (T x {1c})  U {ek}keN and restr ict ing the others  to ItI. T h e n  

keep subs t i tu t ing  strings of elements  of ~he form (a ,g)(a ,g ' ) ,  for c~ E T and 

g,g' E G, with  (c~,g9') and erasing any (a,  l c )  appear ing  so t ha t  the  process  

mus t  eventual ly  stop. If  the  final sequence is not  empty,  t ha t  is a canonical  

fo rm for t; if it is empty ,  then  t = el~ I. Now we prove uniqueness.  Assume  

~1" ' " /3 r  = (~1 " '"  ~p where the  expressions occurr ing on bo th  sides of equal i ty are 

canonical  forms for t E ST. If  ~b E N t = eb t hen  r = p = 1 and ~1 = 51 = eb. 
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Otherwise  let ~i = (ai ,g i )  and ~j = (c~},g}) wi th  gi ¢ l a  ¢ 9}, cq ¢ a i+ l ,  
! ! aj 5~ aj+ 1, l eng th(a / )  = length(a})  = Itl. W h e n  we opera te  with the relat ions 

(a) (e) on our equality, any expression we can obta in  f rom ~ . - . / ~ r  must  have the  

form X1 ( a l l ,  g l l )  " " " (a1~1, glnl )X2 " " " X~ (a~l, g ~ l ) " "  (arn~, g~n~)X~+l where 

• X i  = en for some n _> N; 
ni 

• I - Ih=lg ih  : gi; 

• a i ~ a ih ;  

• at  least one let ter  in the  expression has rank equal to Itl. 

Similarly for 8 1 " "  ~p. In order to have a le t ter-by- le t ter  equali ty between two 

such expressions we mus t  have r = p and ~i = 5i for all i. 

Now it is possible to prove t ha t  the semigroup ST meets  the requi rements  

(1) (5): 

(1): Vm • N leml = m by definition; 

(2): V m ,  n E N ernen -~ emin(m,n) by relation (c); 

(3): let x = 3'1 " " 7 ~  and y = ~ / ~ . . - ~ ,  with 3,j,~/} • I U E.  Then  Ixyl = 

min(h ' l  1 , . . . ,  ]%1,13'~ I , . . . ,  I ~ 1 )  = min(lxl,  lyl); 
(4): let x = ~ 1 " " / ~  in canonical  form and m • N. If 3b • N x = eb, then  

xem = x ~==> ebem = emin(b,m) : eb ~ Ixl -- b <_ m. Otherwise  xem = 

(¢~1 r m i n ( l x [ , m ) ) " "  ( ~  [ m i n ( l x h m ) )  -- x *:::* Ixl _< m; 

(5): let x = ¢ / 1 " " ~ r  in canonical form. I f 3 b  • N x = eb we have xem = 

ebem = emin(b,m) = emeb = emX. Otherwise  xem = (/31 [ m i n ( l x l , m ) ) " "  

I min(Ixl, )) = 
Thus  we can define _ and -~ in ST. Note tha t  Va, a '  • T Vg, g' • G 

( ( a , g )  ~ ( a ' , g ' )  ~ g = g'  A c~ C_ c~'). Indeed ( a , g )  ~ ( a ' , g ' )  ¢==* ( a , g )  = 

elength(c~) (OJ, g ' )  ~- (~ '  [ l ength(a) ,  g ') .  

LEMMA 10: For each n • N, Levn(ST) is a group. It is genera ted  by the ele- 

ments  of  ( I  U E)  A Lev~(ST)  with those relations o f  ST involving only elements  

of  LeVn(ST)  and it is isomorphic to a free sum of  copies o f  G, the n u m b e r  of  

s u m m a n d s  being equal to the cardinality of  Lev~(T) .  

Proo~ By (4) and  (5), e ,  is the identi ty element in Lev,~(ST). 

( h i , g 1 ) " "  (a~,g~) C L e v , ( S T )  "-{en} be in canonical  form. Then  

x(a~,g~l) .  -1 • " ( a l , 9 1 )  = ( a ~ , g ; 1 )  ' ( a ~ , g : l ) x  = ~n-  

Let  x -- 

For the  second cla im notice tha t ,  for obta ining an equal i ty be tween words 

in Levn (ST),  it is enough to  opera te  with subst i tu t ions  involving only e lements  

whose rank  is n. Indeed,  we cannot  use elements  of rank  less t han  n, since 
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this would change the rank of the whole expression, and any relation involving 

elements of rank greater than  n can be replaced in the subst i tut ion by the relation 

involving the corresponding restrictions to n. 

For the last assertion note tha t  in a word whose letters are all from Levn(T) we 

can only simplify strings of the form (a, g)(a,  g')  with (a, gg') and erase letters 

of the form (a, l c ) ,  like in the free sum of copies of G, where each summand  is 

indexed by the appropr ia te  a.  

Delfnition: Let x E ST. Define by cases an element x* E ST. If  ~b E N x = eb, 

put  x* = x = eb; otherwise let x = ( a l , g l ) " "  (ar ,g~) be in canonical form. P u t  

x* = (a t ,  g~-l) . . .  (a  l, g11) • Notice tha t  the last equality gives x* in its canonical  

form. 

The  opera t ion x ~-~ x* associates to each x E ST its inverse in the group 

Levlxl(ST ) (in part icular  Ix* I = ]xl). 

LEMMA 11: Vx, y E ST (x ~1 y ~ x* -~ y*). 

Proof: Let x = ( a l , g l ) ' " ( a r , g r )  and y = ( rh ,h l ) . . . ( r lp ,  hp) in canonical  

forms. The  hypothesis  x -< y says tha t  

( o q , g l ) ' "  (OZr, gr) = (?~1 [ Ixl ,hl)  " " (~?p I lxl,hp) • 

This  means that ,  using the relations between generators of ST, opera t ing on the 

last equali ty we can obtain in a finite number  of steps the same expression on 

bo th  sides. As we noted above, we can restrict ourselves to use relations involv- 

ing only elements in Levlx I (ST). So consider the canonical forms for x* and y* 

and each t ime you used a relation of the form (5, g)((f, h) = (~,gh) for verifying 

the equality ( a l , g l ) " "  (ar,g~) -- (rh Fix I, h i ) " - ( r l p  r ixl, hp) use now the rela- 

t ion (5, h - 1 ) ( 5 , g  -1)  -= (5, (gh) -1) star t ing with the words (a~, g~- l ) . . .  ( a l ,  g l  1) 

and (rip [ ]x i ,hpl )  " ' '  (~1 [ ]x l ,h l l ) .  This allows one to check the equality 

(O~r ,g r l )  " '"  ( O t l , g l  1) = (?Tp f l x l , h p l )  " ' "  (71 I l x l , h l l ) ,  tha t  is x* 4 y*. 

The  same argument  shows the result also in case qk E N x = ek. Finally, if 

3k E N y = ek then 3k ~ < k x = ek, and the assertion is still true. 

Definition: A c o m p l e t e  c h a i n  in ST is a strictly increasing chain x0 -< Xl -< 

• .. -< x ,  -< . . .  of elements of ST such tha t  Vn E N Ix,  I -- n. 

LEMMA 12: Let x0 -< xl  -< "'" -< xn ~ . . . be  a complete chain in ST. De/ine 

~: P (ST)  --+ P(ST)  by Vy C ST ~(y) = yXly]. Then T is an automorphism. 

Proof." By Lemma 8, ~ is a morphism. So it is enough to prove the existence of 

an inverse for ~. 
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= x* . Since, by L e m m a  11, x~ -~ x~ -< --- -< x* -< . . .  Define g y  E S T  ~(y )  Y lul 

is a chain,  by L e m m a  8 ¢ is a morphism.  We have then  Vy E ST (qo~b(y) = 

y%x,x,~,, .vx~lxl~ I = y A ¢ ~ ( y )  = • * - • = y lylXl~,,,i - YXlylX~y I y), whence 

LEMMA 13: Deno te  with CT the set o f  complete  chains o f  ST.  For X = 

{xo -4 x l  -~ .." -~ Xn -~ " " }  and  Y = {Yo -~ Yl ~ " ' "  -'~ Y n  "~ "" "} in CT 

define X Y  = {xoYo -~ XlYl -~ . . .  -~ Xnyn -~ "" "}. Then  CT is a group. 

Proof: Fi r s t  note  tha t ,  by L e m m a  4 and condi t ion  (3), X Y  E CT. Recal l ing  t ha t  

E = {c0 -< el  -< --" -'~ c~ -< . . . }  we have V X  E CT E X  = X E  = X .  P u t t i n g ,  for 

x : {~o -< *~ -< . ' -  ~ ~ -< ---} E O r ,  ~* = {x~ -< ~ -< - - .  -< ~7~ -< ---},  we 

have X X *  = X * X  = E.  

LEMMA 14: Let  CT p = (CT, *) be the opposite group  of  CT, that is the  group 

whose operation is defined by VX,  Y E CT X * Y = Y X .  Then  A u t ( P ( S T ) )  ~- 

c ;  p 

Proof: Let O: A u t ( P ( S T ) )  ---+ CT p be defined by  pu t t ing ,  for ~ E A u t ( P ( S T ) ) ,  

e(~o) = {~(eo) -< v ( e l )  - < - - .  -~ ~(e,) - < . . . } .  If v,  ~ e a u t ( P ( S r ) )  we have 

o ( ~ )  = { ~ ( e 0 )  ~ ~ ( e , )  - < - . .  ~ ~ ( C n )  ~ ' "  "} 

__-- { g 2 ( ~ ( e 0 ) e 0 )  ~ g 2 ( ~ ) ( C l ) e l )  -.< . , .  -~ qO(~)(en)en) -.d, . . . }  

= { ~ ( g 0 ) ~ ( C 0 )  -~ ¢ ( C l ) ~ ( C l )  -~ " ' "  -~ ~)(gn)qO(gn) -~ ' '  .} 

= e ( ~ )  • e(v~). 

Since, by the  proof  of L e m m a  6, every a u t o m o r p h i s m  of P ( S T )  is de t e rmine d  by 

the  values it t akes  on the  e lements  of {ek}kEN, 0 is injective; by L e m m a  12, O 

is sur jec t ive  too.  

THEOREM 1 : I f  [T] = 0 then e0 -< el  -< • " -< e~ -< • . .  is the  only complete  chain 

in ST a n d  A u t ( P ( S T ) )  = {1}. 

Proof: The  c la im a b o u t  comple te  chains is equivalent ,  by L e m m a  14, to  the  

asse r t ion  concerning  A u t ( P ( S T ) ) .  So let x0 -~ x l  -~ . - -  -~ xn -~ . . .  be  a comple te  

chain in ST different from eo < el  -~ - "  < e,~ -~ . . . ,  towards  a cont rad ic-  

t ion.  Since (ST,  ~_) is a forest,  we have 3no E N Vn _> no xn :fi en. Cons ider  

e l ements  x = ( a l , g l ) - - - ( a ~ , g r )  E ST \ {ek}keN and y = ( z h , h l ) - - - ( r l p ,  hp) E 
ST \ { e k  }ken in canonica l  forms, wi th  x -< y or equivalent ly  ((~1, g l ) ' "  ( a t ,  gr) = 

(r/1 [ I x i , h l ) - . ' ( %  [[x i ,hp) .  Since, by L e m m a  10, Levlxl(ST ) is a group,  the  
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last equality means that  we can obtain the word on the left side by modifying 

the word on the right using the relations in the group (see [Ko80, page 178]). 

Since each relation in Lev]~ I (ST) is of the form 

(a,g)(c~,g') = (a, gg') we conclude that,  for all 

extension in {~?l,---,~?p}- Applying this to the 

(a, lG) = e l e n g t h ( a )  = e[x] or 

1 < j < r, aj must have an 

sequence Xno -~ Xno+l "4' "' ' ,  
we get a sequence (in fact one for every letter in the canonical form of Xno) 

S~o C ~o+1 C . . .  in T such that  U~__~o~ is an infinite branch of T. 

THEOREM 2: I /card([T])  ---- 1, then Au t (P(ST) )  ~- G °p. 

Proo~ By Lemma 14 it is enough to prove G ~- CT. 

Let IT] = {~}. First we claim that,  if xo -~ Xl -< " -  -< xn -< " "  is a complete 

chain in ST, then it is completely determined by its first term xo. To prove this 

note that ,  by the argument used to prove Theorem 1, Vn • N 3g • G xn = 

(~ [ n,g).  So let x - -  (~ I Ixl,gl) and y = (~ I]y[,g2) be such that  x -< y, that  is 

(~ I lxl,gl) = (~ I Ixl,g2). This impliesgl = g2- So3g • G Vn • N x n  = (~ In ,  g) 
and this proves both the claim and the theorem. 

THEOREM 3: Let WF and UB be the set of wellfounded trees and the set of trees 

with exactly one infinite branch respectively. Then WF x UB and UB × W F  are 

Borel inseparable in Tr 2. 

Proof'. Let A/" = N N be the Baire space and let (Fo, F1) • (II°(Af × Af2)) ~ be a 

universal pair for II°(Af2), tha t  is: if ~o, ~-1 • II°(A f2) there is x • Af such tha t  

$-o = (Fo)~ and ~-1 = (F1)~. 
Let A and B be the II~ predicates in Af 2 defined by A(x ,y )  ~ ~3z  • 

.h/" (x, y, z) E Fo A ~!z • A/ (z, y, z) • F1 and B(x,  y) ¢==~ 3!z • A f (x, y, z) • 

Fo A -~3z • Af (x, y, z) • F1. 

Let To be the tree of Fo and T1 be the tree of F1. Then, for x and y in A/, 

A(x ,y )  -: :. To(x,y)  • W F  A TI (x ,y )  • UB ~ (To(x ,y ) ,T l (x ,y ) )  • WE × UB 

and B ( x , y )  ¢===> To(x,y)  • VB A Tl(X,y)  • WE ¢=~ (To(x ,y ) ,T l (x , y ) )  • 
UB x WF. So, if WF × UB and UB × WF are Borel separable, so are A and B. 

So assume A and B are Borel separated by C. We shall show that  A ;2 \ C is 

universal for B(Af), a contradiction. 

Fix D • B(Af). Then there are closed sets $-0, ~1 in Af2 such that  for y • Af, 

y • D <  > 3 z • A f ( y , z ) • ~ o C = ~ 3 ! z • A  f ( y , z ) • g r o  

and 
y • D ~ 3z E N (y,z) E ~1 ~ 3!z • Af (y,z)  • 9vl. 
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Fix x E N" such that  .To = (F0)= and ~-1 -- (F1)=. Then we claim that  

Vy 6 A f  (y 6 D ~ (x,y) @ C). We have indeedy E D ~ ~y @ D ~ ~Bz E 

A f ( x , y , z )  E F l a n d a l s o y 6 D = = > 3 ! z 6 A f ( x , y , z )  6 F0, s o y 6 D ~  (x,y) 6 

B ~ (x,y) ~ C. Conversely, we have y @ D ~ =3z E Af (x,y,z)  6 F0 A 3!z E 
A f ( x , y , z )  E F l ,  s o y C D ~ ( x , y )  E A ~ ( x , y ) 6 C .  

THEOREM 4: Let L = {f~}n6N be the language consisting of a countable infinity 
of unary function symbols and XL be the set of (codes for) countably infinite 
structures for L (see [Ke95, 16.C]). Let G and H be countable groups. Then 
{x E XL [ Aut(A=) -~ G} and {x 6 XL ] Aut(A=) - H} are Borel inseparable. 

Proof" Given a countable group G, the map (I)c: Tr ) X L constructed 

above, which associates to each T 6 Tr (the code for) P(SGT°P), is Borel, by 

standard arguments. As proved in Theorems 1 and 2, VT 6 Tr((T E WF ::~ 

Aut(.AOG(T)) = {1}) A (T E UB ~ Aut(A4,c(T)) --~ G)). Let ko: Tr 2 > X L be 

defined by Av(S,T) = -4~c(s ) @ ~4O,(T) where, if B and C are L-structures, we 

define B @ C as the structure whose universe is the disjoint union of the universes 

B and C of B and C respectively and whose operations {f~¢C}nEN are defined 

by Vn 6 N ( ( f ~ c  r B) : f~  A Vu 6 C fs22C(u ) : u A Vv 6 B f~+cl(v ) -- 
v A (f:~*+c 1 [ C) = fc) .  

We have thus Aut(A~(S,T)) ~ Aut(A~a(8)) x Aut(AcH(T)). Indeed, if ~Po and 
qOl are automorphisms of JtcG(s ) and A~,(T) respectively, then their disjoint 

union ~0 U qol is an automorphism of A~(S,T). 

Conversely, let ~b be an automorphism of A~(S.T); it is enough to show that 

every element u in the universe IA~c(s)l of ~4~G(8) is sent by ~b to an ele- 

ment in ]A¢c(s)l and similarly for IA~,(T)I. Assume, towards a contradic- 
~Aq2( S,T) a/,{a, ~ tion, ~b(u) 6 ]A~,(T)I. Then Vn E N c n  w~J  -=- ¢(u); so this means 

that  Yn E N f~ Ace(s) (u) = u. This can happen only if u is the e0-element in 

.d~c(s ) and ¢(u) is the eo-element in A~z(T), since every element of the struc- 

ture .Ace(s), except possibly the eo-element, is moved by something, and the 
same is true for A¢,(T).  

For n 6 N let e~ be the en-element in ~4¢v(s) and e~ the en-element in ACz(T). 

So ¢(e~) E }A,c(s)J. Let m 6 N be such that fA~ ~v(s) is the operation corre- 
-rAq'(S, T) . i , [e l  ~ aI, ~c,,A~(s,T) sponding to the translation by e~. We have J2m v~ lJ = ~ : 2 m  (e~) = 

¢-AV(S,T) ¢(e~o) = e~ 7= IA¢,(T)I but, by the definition of J2m , this would imply 

¢(el) e 

A similar argument works for showing that ~b([Aa,(T)l) C_ IAa,(T)]. 
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T h e n  (S ,T)  C UB x W F  ::> Aut(k~(S,T))  _~ G and (S ,T)  C W F  x UB => 

Aut(qg(S,T))  -~ H .  Now apply  Theorem 3. 

THEOREM 5: Let L = {f~}ncN be a language consisting of a countable infinity of 

unary function symbols. Let G and H be countable groups and let ~ be a sentence 

of L ~  satisfied by all countably infinite s t ructures  for L whose automorphism 

group is isomorphic to G. Then there is a countably infinite structure for L whose 

automorphism group is isomorphic to H satisfying a. 

Proo~ By [Ke95, proposi t ion 16.7] and Theorem 4. 

For G a countable  group, we can investigate fur ther  the proper t ies  of the Borel 

ass ignment  T E Tr ~-~ P(ST)  using the following three  results, which extend and 

complement  Theorems  1 and 2. 

THEOREM 6: Let card(IT]) --- m E N and let Gm be the free sum of m copies of 

G. Then the group of automorphisms of P(ST)  is isomorphic to G~ .  

Proof: Since the cases m = 0 and m -- 1 have a l ready been considered in 

T heo rems  1 and 2, we may  assume m > 2. For the sake of definiteness, for 

1 _< j <_ m,  let G x {j} be the j - t h  copy of G in the sum. By L e m m a  14 it is 

enough to prove tha t  CT ~-- Gm. Let [T] -- {~1, . . .  ,~m} and let no C N be such 

t ha t  V~ E [ T ]  N~Fn o N IT] = {4}, where Vt C N <~ Nt = {~ E Af I t C_ ~}. We 

claim tha t  every complete  chain x0 -< xl  -< " "  --< Xn -< "'" in ST is comple te ly  

de te rmined  by Xno. Indeed, by an a rgument  similar to the one used in the  proofs 

of T h e o r e m s  I and 2, xno must  be  of the form x,~ o = (~jl [ no, gl)  " '" (~j~ [ no, gr), 

with gj~ ¢ l c  and ji  ~ j i+ l  (for r = 0, x~ o = eno). All such forms are possible, 

since they  admi t  the extensions (~jl [ n, g l ) ' "  (~j~ [ n, gr) for n E N to obta in  

a comple te  chain and they are all distinct since at  level no all dist inct  infinite 

branches  are a l ready isolated. So, if x = (~i~ [ I x l , h l ) " "  (~i, [ Ixl,hp) and 

Y = (~l~ [ ly l , k l ) ' " (~ tq  [ ly],kq) are in canonical form, with n0 _< ]xI < lY] 

and x ~ y, then  ({i~ I lxl, h i ) ' "  ({i, [ Ixl, hp) = (~ll I lxl, kl ) - - - (~ lq  I lxl, kq); 

since the right hand  side is in canonical form too (the infinite branches being 

a l ready isolated at  level ]xl), we get p = q, {i~ = {l=, h~ = k~. The  theorem is 

proved not ing t ha t  the  set of all possible canonical forms for xn0 is in i somorphic  

correspondence  with  Gm via  (~j, [ n 0 , g l ) " "  (~j~ [ n0,g~) ~ ( g l , j l ) " "  (g~,j~). 

THEOREM 7: Let [T] be infinite and assume 3n0 E N V{ E IT] N~r~ o M IT] = {{} 

(this implies card([T]) = R0). I f  G~ is the free sum of a countable infinity of 

isomorphic copies of G, then the group of automorphisms of P(ST)  is isomorphic 

to G °p. 
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Proof: I t  is enough to p r o v e C T  ~ G~. F o r m E N ,  let G ×  {m} be t h e m - t h  

copy of G in the  sum G~ and let [T] = {4k}keN- By the same a rgumen t  used 

in the proof  of T h e o r e m  6, every complete  chain xo -~ xl  -~ --- ~ x,~ -< . --  

in ST is comple te ly  de te rmined  by its t e rm  xno. Such a t e rm  has the form 

(4jl F no ,g1) ' "  (4j~ [ no,gr) (for r = 0 this is eno), with gi ~ 1a  and Ji ¢ ji+l. 

This  e lement  corresponds  to (gl, j l ) " "  (gr, j r )  in the i somorphism with  G~. 

THEOREM 8: Let G be nontrivial and assume ~3n0 E N V4 E [T] N~rn o n [T] = 

{4} (this happens for sure if card([T]) = 2 ~° but it is also compatible with 

card(IT])  = Ro). Then card(Aut(P(ST))) = 2 u°. 

Proof Since card(Aut(P(Sx)))  < 2 ~°, it is enough to find an injection C: 

c r .  

We claim tha t  there  exist an increasing sequence of na tura l  numbers  m0 < 
! 

m l  < - . .  < m n  < " "  and sets {4k}keN C [T] and {4k}keN C_ IT], where Vk, 

k'  E N ((k ¢ k '  ~ 4k ¢ 4k' A 4~ ¢ 4~,) A 4k ¢ 4~,), with the  p roper ty  t ha t  

m Vn E N ( ~  [ m~ = ~ I m ~ A ~ ( m n )  ¢ ~n( '~))" This  can be justified as follows: 

if T has a non-isolated branch 4, than  let ~o, 4~,~1,4~, . . .  be infinite branches  

s temming ,  in t ha t  order,  f rom 4; otherwise let 40 and 4~ be infinite branches  

spl i t t ing at  some level mo E N. Let h0 E N be such tha t  bo th  40 and 4~ are 

isolated at  level ho and let 41 and 4~ be infinite branches spl i t t ing at  some level 

m l  > h0 and so on. 

Let  A = { j 0 , j l , - - . }  be a subset  of N, where k < k ~ ~ jk < jk ' ;  we describe 

the cons t ruc t ion  of an infinite chain C(A) = {x0 -~ Xl -~ " -  -~ x~ -~ -- .} of 

ST. Let 9 E G \ { l a } .  For 0 < n < mjo put  x~ = en; for mjo < n < mj~ let 

• = (4 o I I for m j l  < < let 

n t n I Xn = (4jo I '~])(~3o [n,g-1)(~J, [ ,g)(4j~ I n, g -1) 

and so on. If A is finite, when A has no elements  left s imply proceed extending  

the chain tr ivial ly (in par t icular  C(0) = {co -~ el < . . -  -< e~ -~ . . .} ) .  

LEMMA 15: Let X and Y be Polish spaces, B E B ( X  × Y) and  

A = {x E Z 10 ¢ card(B~) <_ N0}. 

Then A E IIll (X)  and  there is a function f: A > yN which is I I l - m e a s u r a b l e  

(as in [Ke95, 36.F]) such that Vx E A B~ = {f(x)(n)}~eN. 

Proof." By [Ke95, exercise 39.23] (note tha t  the proof  is in ZFC),  A* = 

{x • X I card(B~)  < R0} is coanalyt ic  and there  is a funct ion f*:  A* - - ~  yN 
1 which is I I l - m e a s u r a b l e  and Vx E A* B~ c_ {f*(x)(n)}~eN. 
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Now Vx • X (x • A ~ x • A* A 3n • N ( x , f* (x ) (n ) )  • B), so A is 

coanalytic too. Let P = {(x,n) • X x N i x  • A A ( x , f* (x ) (n ) )  • B},  so that  

P is coanalytic and Yx • X (x • A ~ 3n • N P(x ,n ) ) .  By the number 

uniformization property (see [Ke95, definition 22.14 and theorem 35.1]), there is 

h: A > N which is II~-measurable and Vx • A P(x ,  h(x)). For x • A and n • N 

put  now 
f* (x)(n) 

f ( x ) ( n ) =  f*(x) (h(x) )  

Then f is II~-measurable and Vx • A Bx 

if (x , f* (x ) (n ) )  • B, 
if ( x , f* (x ) (n ) )  ~ B. 

= {f(x)(n)}n~N. 

THEOREM 9: Let £. be any countable language and G be a countable group. 

Then {x • XL I Aut(.A~) _~ G} • II~(XL). 

Proof'. Consider the subset F o fX~  x Sou defined by F(x ,g)  4==~ g E Aut(,4x). 

It is closed and moreover Vx E Xz: Fx = Aut(.A~). Let 

M~  o = {x E Xz: I card(Aut(A,))  _< R0} e II~(Xz:). 

Let f :  M a  o > S ~  be a II~-measurable function such that  gx E M u  0 F ,  = 

{ f (x) (n)}neN,  as in Lemma 15. We have Vx E XL (Aut(.A,) - G z---->, x e 

MUo A {f(x)(n)},~eN ~-- G), so it is enough to show that  the second condition in 

the conjunction is coanalytic. 

Let L0 = {'} be a language consisting of a binary function symbol, considered 

as the language for groups, and let YLo = 2N x N N2 be the set of (codes of) 

countable structures for L0 (the factor 2 N allows to consider structures whose 

universe is a subset of N, in particular finite structures). Notice that there is a 

norel function g : S ~  --+ YLo such that,  if z e S ~  is such that  {z(n)}neN is a 

subgroup of Sou, then .4g(z) -~ {z(n)}~N. 

Then g f:  M ~  o ---+ YLo is H~-measurable and gx E M~0 Jlgf(x) "~ Aut(.A~). 

Since {y E YLo ] ~4y "~ G} is Borel in YLo (being an isomorphism class) we have 

that  {x e M ~  o t Agf(~) "" G} = {x • M ~  o I {f(x)(n)},~eN "" G} is coanalytic as 

required. 

THEOREM 10: Let L = {f~},~eN be a language consisting of a countable 

infinity of unary function symbols and let G be a countable group. Then 

{x • XL ] Aut(A, )  ~ G} is complete coanalytic in XL.  

Proof: We will define a Borel function F: Tr ~ X L such that  VT E Tr 

((T e WF ~ hut (At(T))  --~ G ) A ( T  E IF ~ card(Aut(Ar(T))) = 2~°)). This will 

be the composition F = ¢GEO where Oa: Tr ~ XL assigns to T (the code for) 
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P(SGT°P), while E: Tr ~ Tr and O: Tr ~ Tr are defined as follows. For T E Tr 

put t E @(T) if, and only if, the sequence (t(1),t(3), t ( 5 ) , . . . ,  t(length(t) - 2)) 

or (t(1), t(3), t (5 ) , . . ,  t(length(t) - 1) - -  depending on whether length(t) is odd 

or even - -  is in T (thus O(T) contains all sequences of length 1; the sequences 

(re, n) and (m,n ,p )  are in O(T) just in case (n) E T and so on). So O sends 

wellfounded trees to wellfounded trees (since ~ E [O(T)] =~ (~(1), ~(3), ~(5) , . . . )  E 

IT]) and ill founded trees in trees with 2 ~° infinite branches (since ~ E IT] =~ 

(mo,~(0) , rn l ,~(1) , . . . )  E [O(T)] for every (mo, m l , . . . )  E N) .  For T E Tr, 

simply adds one infinite branch; for instance let 

E(T) = {(t(0) + 1, t(1) + 1 , . . . ,  t(length(t) - 1) + 1)}teT U {0n}n~N. 

Thus, if T E WF then EO(T) E UB and Ant(At(T)) -~ G; if T E IF we have 

card(~@(T)) = card(Ant(At(T))) = 2 ~°. 

By the way, note that the function O witnesses that {T E Tr I card([T]) = 2 ~° } 

is Ell-hard and Borel inseparable from WF. 

Using the construction given, for instance, in [Ho93, pages 228-229], we can 

associate, in a Borel way, to each element x E XL, an element x t E XL,,  where 

L ~ = {R} is a language consisting of one binary relation symbol, in such a way 

that  Vx, y E XL (Ax ~-- Ay ~ A~, ~- A~,) and Yx E X L A u t ( A x )  ~ Aut(Ax,). 

Moreover, for each x E XL,  the structure A~, is a graph. We can thus translate 

our results in the language L ~ and get the following theorems about the class 

G C_ XL, of (codes for) countably infinite graphs. 

THEOREM 4': Let G and H be countable groups. Then {x E 6 [ Aut(A~) _~ G} 

and {x E G [ Aut(Ax) _~ H} are Borel inseparable. 

THEOREM 5~: Let G and H be countable groups and let a be a sentence of 

L ~ satisfied by all countably infinite graphs whose automorphism group is 

isomorphic to G. Then there is a countably infinite graph whose automorphism 

group is isomorphic to H satisfying a. 

THEOREM 10': Let G be a countable group. Then {x E 6 I Aut(Ax) ~ G} and 

{x E XL, [ Aut(Ax) ~ G} are complete coanalytic. 

Remark: We have obtained a family of complete coanalytic sets in a Polish 

space which are pairwise disjoint and Borel inseparable. Notice that  this is a 

large family of such sets, being indexed by the class of countable groups up to 

isomorphism and the class of groups being Borel complete by [Me81]. 
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A general procedure for producing pairs of disjoint Borel inseparable coanalytic 

sets can be found in [Be86]. 

The results of Theorems 4 and 5 hold for other classes of structures, in addition 

to graphs, which Theorems 41 and 51 were stated for. Indeed, if E is a countable 

language containing a relation or function symbol of arity at least 2, we can 

assign, in a continuous way, to each element of g an element of XL, preserving 

the isomorphism relation and in such a way that  the automorphism group of the 

graph is equal to the automorphism group of the structure we associate to it. 

It  could be interesting to investigate further which classes C of countable 

structures, closed under isomorphism, in a given language, satisfy the analogs 

of Theorems 4 ~ and 5 I. For instance, if C has the reconstruction property (that 

is VA, B • C (Aut(A) -~ Aut(B) ~ .4 -~ B)) this is not the case. For example, 

let L: = {+, fq}qe(} be the language for rational vector spaces and let C C XL 

be the class of countable rational vector spaces. Then C has the reconstruction 

property. 

3. S o m e  r e s u l t s  a b o u t  Zp 

We cannot extend the results of Theorems 10 and 10 t to uncountable groups; 

we can in fact prove that,  for p a prime number, {x C XL ] Aut(Ax) -~ Zp N } is 

II~&:E~-complete. For this we need to simplify the above construction for the 

case when our group G is commutative. 

To this aim we first observe - -  as arose in a discussion with S. Solecki - -  that  

if we are just interested in dealing with Abelian groups we can use the following 

structures to obtain the results given above. 

Let G be a countable Abelian group (which we deal with in additive notation) 

and let QT G (denoted QT in the sequel if unambiguous) be the semigroup obtained 

by ST c adding commutativity,  that  is adding the relations 

(f) Va, a' C T Vg, g' • G (a,g)(a',g') = (a',g')(a,g) 
in the presentation of the semigroup. We point out that  this is not a particular 

case of the above construction for the case of G Abelian, since - -  even in that  

case - -  the semigroup ST is not commutative (except when T does not contain 

pairs of incompatible elements or G = {lc}) .  

We can view QT as the set of all functions f from [.J~=0Levm(T) (for some 

n • N) in G with finite support,  such that  Va • T Vk >_ l eng th (a ) f ( a )  = 

~--~fleLevk(T),aC_flf(fl)" For n C N, the element en is the function from 

U~=oLevm(T) with constant value 0c. The product of f and f l  in QT is thus 

defined first restricting them to the intersection of domains (one included in the 
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other) and then adding pointwise the values of f and f ' .  Since every relation in 

ST still holds in QT, QT satisfies requirements (1)-(5) and the lemmas following 

them, and also, with the same proofs, the stated properties of ST, except that  

now, thanks to commutativity of G and QT, we have CT p = CT, G °v = G and 

we should substitute, in Theorem 6, G m and G,~ with G m and, in Theorem 7, 

G~ and G °p with G <~. 

Fix now a prime number p and let G = Zp; we obtain thus the semigroup Q~" 
p ~zv- 

and the structure (~¢T) (for p = 2 this is the structure appearing in [Ma81] 

and [Mo93]). 

Particularizing our results to this case we have the following. 

THEOREM 1": I f  IT] = ~ then eo -< el -< . . .  -4 en -< ""  is the only complete  
Zp 

chain in Q~" and A u t ( P ( Q  T )) = {1}. 

THEOREM 6": Let  card(IT]) = m • N*. Then Aut(P(QZT')) _~ ZB. 

THEOREM 7": Let  [T] be infinite and assume 3n0 • N V~ • [T] N~ rno FLIT] -- {(}. 
Zp <w T h e n  A u t ( P ( Q ~  )) _ 7~p . 

We have now an improved analog of Theorem 8. 

Zp 
THEOREM 8 " :  Assume~3no  • N V ~  • IT] N~[nof-I[T ] ---- {~}. T h e n A u t ( P ( Q  T )) 
_~ Zp N . 

Zp 
Proo~ As in Theorem 8 we can prove c a r d ( A u t ( P ( Q  T ))) = 2 }~°. Since, by 

Zp Zp 
Lemma 14, A u t ( P ( Q  T )) ~_ CT, each element of m u t ( P ( Q  T )) has order p and 

Zp Zp 
A u t ( P ( Q  T )) is commutative; so we deduce that A u t ( P ( Q  T )) is a vector space 

on Zp of dimension 2 }~° , thus it is isomorphic (as a vector space and so as a group) 
to  Zp N . 

LEMMA 16: {T • Tr[  ~3no • N V~ • IT] N~[no (-1IT] = {(}} is complete  analytic 

i n T r .  

Proof: First, to see that { T E T r  I -~3n0 • N V ~ •  [T] N~I~ o N [ T ] - -  {~}} is 

analytic, we have, dealing with the complement, VT • Tr(3n0 • N V~ • Af (4 • 

[T] ~ N ~  oN[T]  -- {~}) ¢::::V 3no • NV~ • A / "  (Vm • N ~  [ m  • T ~ Vz] • 

Af (Vk < no z](k) = ~(k) ==v Vk • N ~(k) -- ~(k) V 3k • N r/ F k ~ T))).  

To prove the hardness part we reduce IF to our set. For T • Tr let T I be 

the tree consisting of an infinite branch {0~},~eN with a copy of T attached to 

each node 0 n of that  infinite branch. The assignment T ~ T I is Borel and for 
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T E WF, T' has a unique infinite branch, while, for T E IF, the branch {0n}~eN 
is non-isolated in T ~, thus T t is in the set we are interested in. 

Another reduction doing the job is the function O described in the proof of 

Theorem 10. 

THEOREM 11: For any countable language £ and prime number p we have 
1 1 {x E Xc [ Aut(A~) -~ Zp N } E IIl~U:El(X£ ). 

Proof: Since the automorphism group of a structure in X£ is a closed subset of 

S~ ,  it satisfies the continuum hypothesis. So, appealing to the same argument 

used at the end of the proof of Theorem 8*, Vx E X~ (Aut(.A~) -~ Zp N .: ;- 

Vg E S~  (g E Aut(A~) =~ gP ---- id) A Vg E So~ Vh E S~  (g E Aut(A~) A h E 

Aut(A~) ~ gh = hg) A card(Aut(A~)) > R0). Since F = {(x,g) E X£ x So~ [ 

g E Aut(J[~)} E III°(X£ × S~) ,  the first and second condition in the preceding 

conjunction are coanalytic, while the third is analytic. 

THEOREM 12: Let L = {f~}ncN be a language consisting of a countable infinity 
1 1 of unary function symbols. Then {x E XL [ Aut(Ax) ~- Zp N } is IIl&~]~-complete 

in XL. 

Proof: Let C = {T E Tr I -~3no E NV~ E IT] N~r,~ o M[T] ---- {~}}. Since C 
is complete analytic by lemma 16, Z = WF x C is II~&~-complete. So it is 

enough to Borel reduce it to {x E XL [ Aut(Ax) -~ ZpN}. 

Let G be a non-Abelian group and let ¢c :  Tr ~ XL be defined as in the 

proof of Theorem 4. Let ~p: Tr --+ XL be a Borel map assigning to each 
Zp 

T E Tr a code for P(QT )" Finally, let ff~: Tr 2 ) XL be defined by A~(T,V) ----- 
J[¢G(T) ® .A~p(y), where the direct sum $ is defined as in the proof of Theorem 

Zp 
4. Again we have Aut(A~,(T,V)) --~ Aut(P(ST¢)) x Aut(P(Q v )). 

We claim that  VT, V E Tr(Z(T,V) ¢=~ Aut(Av(T,v)) ~-- ZpN). Indeed, if 

Z(T,V)  holds, then we have Aut(P(STG)) ---- {1}, Aut(P(QZTP)) --~ Zp N, so 

Aut(Av(T,V)) ~-- ZNp. If Z(T,V)  fails, there are two cases: T ~ WF or 

T E WF A Y ~ C. In the first case Aut(P(STC)) contains a subgroup isomor- 

phic to G, so Aut(Av(T,V)) is not Abelian, containing a subgroup isomorphic to 

Aut(P(STC)), and cannot be isomorphic to Zv ~. In the second case Aut(A.(T,V)) 

_~ Aut(P(QZP)) ;~ Zp N by Theorems 1' ,  6* and 7*. 

THEOREM 12~: Let L' ---- {R} be a language consisting of one binary 
relation symbol and let ~ C_ XL, be the class of (codes for) graphs. Then  
{x E G [ Aut(Ax) ~- ZvN } and {x E X L '  [ Aut(A~) ~ Zp N } are II~&IJ~-complete. 
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Proo~ By Theorem 12 and the reduction discussed after Theorem 10. 

Definition: For Tt • l~ let /~n = {T • Wr I card([T]) = n} (so, in particular, 

B0 = W F  and B1 = UB). Let also B~o = {T C Tr I card([T]) = RoA3n0 • NV~ • 

[T] N~InoN[T ] = {~}} a n d B ~  = {T • Tr I ~3n0 • NV~ • IT] N~InoN[T ] = {~}}. 

LEMMA 17: For A • w + 1, B~ and B ~  are Borel inseparable in Tr. 

Proof'. In the remark at the very end of the proof of Theorem 10, we observed 

the Borel inseparability of WF and {T • Tr I card([T]) = 2~0}, which implies 

the Borel inseparability of WF and B ~ .  Applying a Borel function Tr ---+ Tr 

which adds to each tree A infinite branches isolated at the root, we get the desired 

result. 

For the case of the group Zp we can thus extend a bit the inseparability results 

of Theorems 4, 5, 4' and 5' as follows. 

THEOREM 13: Let L = {fn}neN be a language consisting of a countable infinity 

of unary function symbols and put  Vm • N Am = {x • XL [ Aut(A~) ~- Zp} ,  

A~ = {x e XL I Aut(Ax) -~ Zp<~}, A ~  = {x • X L [ Aut(A~) -~ ZpN}. Then for 

A • w + 1, A~ and Aoo are Borel inseparable. 

THEOREM 14: Let L = {fn}nCN be a language consisting of a countable infinity 

of unary function symbols. Fix A C w + 1 and let ~ be an L~l~-sentence satisfied 

by all countabty infinite structures whose group of automorphisms is isomorphic 

to Z~p if  A E N and to Z<p ~ if  A = w. Then there is a countably infinite structure 

for L whose automorphism group is isomorphic to ZNp satisfying a (in addition to 

a countable infinite structure for every abstract countable group, as by theorem 

5). 

THEOREM 13': Let L r -- {R} be a language consisting of one binary relation 

symbol and let ~ C XL, be the class of (codes for) countably infinite graphs. Put  

Vm e N A~ = {x • XL, I Aut(Ax) ~- Zp} ,  A~ = {x • XL, I Aut(Ax) ~- Z<~}, 

d ~  -- {x e XL, I Aut(Ax) ----- Zp N } and V,~ • w + 1 U {oe} m~2 -- A~ n G. Then for 

j e {1,2} and ,~ • w + 1, A~ and A• are Borel inseparable. 

THEOREM 14q Let L ~ = {R} be a language consisting of one binary relation 

symbol. Let ,~ • w + 1 and let a be an L ~ - s e n t e n c e  satist~ed by all countably 

infinite graphs whose automorphism group is isomorphic to Zp ~ if )~ C N and to 

Z <~ if  A = w. Then there is a eountably infinite graph whose automorphism 

group is isomorphic to ZNv satisfying a. 
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