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ABSTRACT

We prove that, given a countable group G, the set of countable structures
(for a suitable language L) Ug whose automorphism group is isomorphic
to G is a complete coanalytic set and if G % H then Ug is Borel insep-
arable from Uy. We give also a model theoretic interpretation of this
result. We prove, in contrast, that the set of countable structures for L
whose automorphism group is isomorphic to Zﬁ, p a prime number, is
N} &E}-complete.

Introduction

This paper is devoted to the study of those classes of countable structures (for
a given countable language L) characterised by sharing a given group of auto-
morphisms.

The set X, of (codes of) structures for L with universe N is a Polish space. For
G a group let Ug = {z € X1 | Aut(A4,) ~ G} be the set of countable structures
for L whose automorphism group is isomorphic to G.

Let us consider first the case when G is countable. If the language L is very
simple, Ug can be very simple as well. For example, if L is empty or it consists
of one unary relation symbol, then every Uy is empty. On the other hand we
prove that, as soon as the language becomes reasonably rich, the sets Uy are
quite complicated.
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THEOREM: Let L be a language containing infinitely many unary function sym-
bols or a function or relation symbol of arity at least 2. Then, for every countable
group G, the set Ug is Hi-complete in Xy,

This result cannot be extended to uncountable groups. We see in fact that the
following holds.

THEOREM: Let L be as above. Then, for any prime number p, uzl; is Hi&Ei-

complete, where II1&X} is the class of all intersections of a coanalytic and an
analytic set.

The first theorem stated gives us a family of pairwise disjoint complete
coanalytic sets indexed by countable groups up to isomorphism. This family
turns out to be very entangled. More precisely, we have the following result.

THEOREM: Let L be as above. If G and H are countable groups, with G # H,
then Uqg and Uy are Borel inseparable.

This theorem can be rephrased by saying that, if B is a Borel subset of Xy,
containing Ug, then for every other countable group H there is an element of
Uy which belongs to B. This overspill property can be exploited, using the
correspondence between invariant Borel subsets of X; and L, .-sentences, to
obtain the following model theoretic interpretation of the preceding result.

THEOREM: Let L be as above. Let G be a countable group and suppose ¢ Is
an L, -sentence satisfied by all countable structures for L whose automorphism
group is isomorphic to G. Then for every countable group H there is a countable
structure for L whose automorphism group is isomorphic to H satisfying o.

If L = {R}, R a binary relation symbol, the preceding theorems still hold when
we confine our attention to the class of countable graphs.

To obtain these results a concept which turns out to be a very powerful tool is
that of a group tree. These are trees such that every level carries the structure
of a group; they have long been used in mathematical logic for various purposes:
see, for instance, [Sh76], [Ma81], [La85], [M093], [S095] (the terminology group
tree is taken from [Ma81] and [S095]).

In this paper we develop a construction similar to the one used in [Ma81, ap-
pendix] and {Mo93] but in a more general context (we shall recover that one later
dealing with a special case); we shall assign, in a Borel way, to each descriptive
tree T a group tree S&, depending on a fixed countable group G. Each level
Levn(Sqq ) will be a group isomorphic to a free sum of copies of G, the number
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of summands — finite or countably infinite — being equal to the cardinality of
Lev,(T).

In the spirit of this paper the work of [M093] is particularly interesting. Indeed,
while that paper deals with recursive model theory, several arguments work in a
classical descriptive set theoretic context too.

So, if L is a countable language as above and X is the Polish space of (codes
for) countable structures for L, we deduce from there that the set of non-rigid
structures is complete analytic (a special case of the first theorem stated above)
and we can also obtain a proof in ZFC that the isomorphism relation in Xy, is
complete analytic using just methods of classical descriptive set theory. For a
proof of this fact using effective descriptive set theory see [FS89]; for a proof
using classical descriptive set theory in ZFC-}—E}—determinacy see [Ke95, 27.D).
Another classical type proof in ZFC is due to R. Dougherty.

We begin stating some basic properties of the structures we shall be interested
in.

In the second section we describe the construction of our group trees Sqq and
prove the main results; it will be more convenient to prove them in a slightly
different, order from the one they were stated above.

In the last section we deal with the uncountable case, working with the groups
ZY, p a prime number.

ACKNOWLEDGEMENT: We wish to thank R. Dougherty, G. Hjorth, A. Marcone
and S. Solecki for their important help and suggestions. In particular A. Marcone
helped us in clearing the presentation of the main construction, which is now more
perspicuous than in an earlier draft of the paper.

1. Some algebraic preliminaries

Let S be a semigroup for which some mapping | |: S — N is defined and which
contains a family {e;}ien of elements and such that

(1) Ym €N |en| = m;

(2) Ym,n € N enen = emin(m,n);

(3) Vz,y € S |zy| = min(|z], |y|);

(4) Vz € SYm €N (zep, = z <= |z| < m);

(5) Vz € S Vm € N ze,, = ez,
The function’| | will also be called rank in the sequel.

Forz,yc Sdefiner jy<+=zc=¢pyandz <y<=zyAz#y.
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LEMMA 1: Vz,y € S (z Xy < Im e Nz =epy).

Proof: The forward implication is immediate. So assume Im € N z = e,,,y. By
(3) and (1) |z| < m so, using (4), (5) and (2), T = ejzjemY = €|g|y-

LEMMA 2: < is a partial order.

Proof: By (5) and (4), Vz € S e = zejy = x whence £ < z, proving
reflexivity. Assume now z X y X z, that is T = e;)y Ay = e)yz; this implies
T = €min(jz|,|y|)? and T X z, proving transitivity. Finally assume x < y < z, which
means T = )5y Ay = ejyz. Suppose |x| < |y| (the case |y| < |z| is symmetric).
We have thus ¥ = emin(jz|,|y)¥ = €/z|€y|T = €| = T and antisymmetry is
proved.

LEMMA 3: Vz,y € S (z <y = |z| < |y]).
Proof: Let x <y. Then x = e;y. The relation |y| < |z| is impossible, since
(4), (5) and (2) would then imply = = e||€}y |y = €,y = ¥.

LEMMA 4: Vz,y,2,t €S (z R yAz Xt = zz =2 yt).

Proof: We have T = €|,y and z = e|,jt. S50 Tz = emin(|z|,|2|) ¥t = YL

We turn now to a model P(S) = (S, (fa)acs), where, for a € S, f, is the
unary function defined by Vz € S f,(z) = az.

LEMMA 5: Let ¢: P(S) —>» P(S) be an automorphism. Then Vz,y € § (z =
y <= o(z) 2 9(y))-

Proof: We have

rXy<ImeNzr=e,y <=
< Im € N ¢(z) = p(emy) = emp(y) =
= p(z) 2 o(y)-
LEMMA 6: Let ¢: P(S) —— P(S) be an automorphism. Then there exists a

strictly increasing chain ag < a1 < -+ < a, < --- of elements of S such that
Yz € S Vm > |z| o(z) = zaum.

Proof: Assume m > |z|. By (4), ¢(z) = p(zen) = zp(em). Since (1) and (2)
imply Vh,k € N (en, < ex <= h < k), using Lemma 5 we get ¢(eg) < p(e1) <
<+- < @ple,) < --- It is enough to put Vh € N ay, = ¢(en).
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LEMMA 7: Let ¢: P(S§) — P(S) be an automorphism. Then ¥z € S |p(z)| =
|-

Proof: By Lemma 6, let ap < oy < -++ < @y, < - - - be a strictly increasing chain
of elements of S such that Yz € § Vm > |z| p(z) = za,,. By Lemma 3 we have
lag| < Jar| < +++ < |an| < --- and this implies Vn € N |a,| > n. So, for m > |z|,
we have |a,,| > m > |z| and thus |p(z)| = |zam| = |z|.

LEMMA 8: Let ag < a1 < --- < a, < --- be a strictly increasing chain in
S. Then Yz € S Vn > |z| za, = Ty, and, defining Yz € S p(z) = ZTay,,
@: P(S) — P(S) is a morphism.

Proof: We have, as before, Vn € N |a,| > n. Let z € S and let k¥ € N with
|z| < k. Thus |ak| > |eyz)| > |z|. Since )z < ax we have aj;| = €jq,, |k Whence
Qg = :ce|am|ak = TQ.

We prove now that the function ¢: P(S) — P(S) defined by Vz € S ¢(z) =
Ty is a morphism. Assume g8,z € S. Recalling that |8z| < |z|, by the first
part of the proof we have p(8z) = Brays,) = Bray,) = Bo(z).

Remark: (S, <) is a forest, where Yn € N Lev,(S) = {z € S| |z| = n}. Indeed,
for « € Lev,(S) and m < n, z has exactly one predecessor in Lev,,(S), namely
em.

So, adding a common root, we can view S as a tree in the descriptive set
theoretic meaning. If S is countable we can thus identify [S] with a closed subset
of the Baire space N¥. By Lemmas 5 and 7, every automorphism of P(S) induces
an isometry of ([S], d) where, for £,n € [S], d(£,n7) = 2771, if £ # n and n is the
first level where £ and % differ.

2. The main construction

Let now G be a countable group. To each T € Tr we associate a semigroup SG
(denoted St in the sequel, if no ambiguity arises) via generating elements and
defining relations. Noting that, for each ¢ € G, T x {g} is a tree isomorphic
to T, let I = T x G and consider a set of new elements E = {ej}ren, where
Vk,k' € N (k£ k' = er # ex). Let I U E be the set of generators for Sr.

The relations between the generators of the semigroup are the following;:

(a) V7,7 € I (length(y) < length(y) = v¥ = v(v' [ length(y)) A vy =

(v’ I length(v))7);
(b) Va € T' Vg,¢' € G (o, 9)(, ¢') = (o, 99');
(c) Ym,n € N enen = emin(m,n);
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(d) Yy € I ¥n e N e,y = vye, = 7 | min(length(~),n);
(e) VaeT (CY, 1G) = €length(a)-

Remark: The last condition on the generators kills immediately the copy
T x {1} of T, forcing each element in Lev,(T), for n € N, to be equal to e,. So
if we restrict ourselves to the Gs set Tt* = {T' € Tr |Vn € NJa € N* a € T},
we can avoid the use of the set F = {ej}ren, deleting (e) and substituting (c)
and (d) with

(") Vm,n € N (m < n = Va € Levy(T) V8 € Lev,(T) (o,16)(B,1¢) =

(o, 16));

(d') Vy € I Vn € NVa € Lev,(T) (o, 1¢)y = v(e, 1g) = v | min(length(vy),n)
respectively. Notice that the relation (c¢’) identifies all the elements in the same
level of T' x {1¢}.

This is an equivalent construction, allowing us to get the same results as in
the sequel.

Define now the rank | |: S — N. For generators let Vk € N Vy € T (|ex| =
k A |y| = length(y)). Ift = B1---08 € Sr, with §; € I UE, define [t| =
min{|Bi), ..., 16-]). Notice that this is well defined, being independent of the
choice of the word representing ¢, since the use of any one of the above relations
does not change the minimum of the ranks of the generators involved.

Definition: Let t =y --- B, € Sr, with 8; € I U E. The expression 3, --- B, is
a canonical form for ¢ if

o |Bi| =" =16 =t

¢ no substring of the forms (o, 1¢) and (e, g)(e, g') occurs in By - Gy,

¢ either no element of {eg}reny occursin By ---Brorr=1A3k €N [ = e.

LEMMA 9: Every element of St has exactly one canonical form.

Proof: Lett = p1---pr € St, with 8; € TUE. If §;--- 3, does not contain
elements of I, then t = B1--- B, = ey, **-€. = €min(by,...b,)- Otherwise let
d1 - -+, be the expression obtained from 3 - -- B, after deleting all occurrences
of elements from (T X {1g}) U {ex}ren and restricting the others to |t|. Then
keep substituting strings of elements of the form (e, g)(a,g’'}, for & € T and
g9 € G, with (e, gg'} and erasing any (o, 1g) appearing so that the process
must eventually stop. If the final sequence is not empty, that is a canonical
form for ¢; if it is empty, then t = e;;. Now we prove uniqueness. Assume
B1--- Br = b1, where the expressions occurring on both sides of equality are
canonical forms fort € S7. f 3b e Nt =¢, then r =p =1 and 8; = §; = €.
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Otherwise let 8; = (aj,4:) and §; = (o}, g}) with g; # 1g # g, o # @it1,
ol # oy, length(a;) = length(a}) = |t|. When we operate with the relations
(a)—(e) on our equality, any expression we can obtain from 3, - - - 3, must have the
form Xi(ea1,911) - (@1ny» 91ny ) X2 - - Xe(@r1, 9r1) - - (Qrngs Grn, ) Xr g1 Where
e X; = e, for some n > [t|;
o HZ;1Qz'h = Gi;
o a; C ayn;
e at least one letter in the expression has rank equal to |¢].
Similarly for 8 ---dp. In order to have a letter-by-letter equality between two
such expressions we must have r = p and 8; = §; for all <.
Now it is possible to prove that the semigroup Sy meets the requirements
(1)=(5):
(1): Ym € N |e,,| = m by definition;
(2): Ym,n € N epen = emin(m,n) by relation (c);
(3): letz =y and y = -7, With v;,7; € TUE. Then |zy| =

min(|yil, .- [vels 171l -+ rpl) = min(|z], [y]);
(4): let z = fB1--- B, in canonical form and m € N. If 3b € N z = ¢, then
Ty = T <= €p€m = €min,m) = & < |2| = b < m. Otherwise re, =

(61 | min(|z},m)) -+ (Br [ min(|z|,m)) =z > |z| < m;

(5): let £ = By --- B, in canonical form. If 3b € N z = e, we have ze, =
€€m = Emin(bym) = €m€ = emT. Otherwise ze, = (61 [ min(|z|,m))---
(Br | min(|z|,m)) = emz.

Thus we can define < and < in Sr. Note that Vo,o/ € T Vg, € G
((e,9) 2 (,g') &= g =g ANa C ). Indeed (a,9) 2 (o, ¢) = (a,9) =
6length(oz)(a/’g/) = (' [ length(a), ¢').

LeEMMA 10: For each n € N, Lev,,(ST) is a group. It is generated by the ele-
ments of (I U E) N Lev,(Sr) with those relations of St involving only elements
of Lev,(St) and it is isomorphic to a free sum of copies of G, the number of
summands being equal to the cardinality of Lev,(T).

Proof: By (4) and (5), e, is the identity element in Lev,(S7). Let z =
(01,91) - (@r, gr) € Levn(St) “{en} be in canonical form. Then

w(a'l‘7gr—1) T (ahgl—l) = (ar:g;l) tee (al)gl_l)m = €n.

For the second claim notice that, for obtaining an equality between words
in Lev,(ST), it is enough to operate with substitutions involving only elements
whose rank is n. Indeed, we cannot use elements of rank less than n, since
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this would change the rank of the whole expression, and any relation involving
elements of rank greater than n can be replaced in the substitution by the relation
involving the corresponding restrictions to n.

For the last assertion note that in a word whose letters are all from Lev, (T') we
can only simplify strings of the form (a, g)(c, ¢') with (@, gg’) and erase letters
of the form (o, 1¢), like in the free sum of copies of GG, where each summand is
indexed by the appropriate .

Definition: Let z € St. Define by cases an element z* € Sp. If 3 € N z = e,
put z* = = = ep; otherwise let z = (a1,91) - - - (@, g-) be in canonical form. Put
z* = (ar,g7Y) -~ (a1,97 ). Notice that the last equality gives z* in its canonical
form.

The operation z > z* associates to each & € Sy its inverse in the group
Lev|q|(St) (in particular |z*| = |z}).

LEMMA 11: Vz,y € Sr (z <y = =* < y*).

Proof: Let z = (o1,q1) (0, gr) and y = (m,h1) - (1p, hp) in canonical
forms. The hypothesis z < y says that

(@1,91) - (ar,gr) = (1 [zl ha) -+ (mp T 12y Pop).-

This means that, using the relations between generators of St, operating on the
last equality we can obtain in a finite number of steps the same expression on
both sides. As we noted above, we can restrict ourselves to use relations involv-
ing only elements in Lev|y(St). So consider the canonical forms for £* and y*
and each time you used a relation of the form (4, g)(8, h) = (8, gh) for verifying
the equality (a1,91) - (@r,gr) = (m | |2}, h1) - (p | ||, hp) use now the rela-
tion (8,A"1)(,971) = (6, (gh)™!) starting with the words (e, g7") - (e1,97")
and (n, [ |zl k") (m | |z|,h7"). This allows one to check the equality
(G g7+, 07 1) = (mp LIl By )+~ O 1 J2], ), that s 2 < y*.

The same argument shows the result also in case 3k € N z = ex. Finally, if
3k € N y = e, then 3k’ < k = = ex and the assertion is still true.

Definition: A complete chain in St is a strictly increasing chain z¢ < 21 <
or < Zp < --- of elements of Sy such that Vn € N |z,| = n.

LEMMA 12: Let zg < 21 < -++ < &, < ...be a complete chain in Sp. Define

@: P(S7) — P(Sr) by Yy € St ¢(y) = yz|y- Then ¢ is an automorphism.

Proof: By Lemma 8, ¢ is a morphism. So it is enough to prove the existence of
an inverse for ¢.
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Define Vy € St 9(y) = yz},. Since, by Lemma 11, 2§ < 2] < -+~ <@y, < -
is a chain, by Lemma 8 ¢ is a morphism. We have then Yy € Sr (p¥(y) =
yzl*ylx|w'~y|] = y:vrylcc|y| =y Aply) = yx|y‘x’|“zly|| = y:cly|z|*y‘ = y), whence
Y=t
LEMMA 13: Denote with Cr the set of complete chains of Sp. For X =
{zg <713 <+ <2y <-}andY ={yo < y1 < -+ < yp < ---} In Cyp
define XY = {zoyo < T1y1 < ++* < TpyYn < ---}. Then Cr is a group.

Proof: First note that, by Lemma 4 and condition (3), XY € Cr. Recalling that
E={ey<e3 <<€, <} wehave VX € Cr EX = XE = X. Putting, for
X={zp<z1 < <2y <} ECT, X* ={af <27 <--- <zk <---}, we
have X X* = X*X = E.

LEMMA 14: Let C7¥ = (Cr,*) be the opposite group of Cr, that is the group
whose operation is defined by VX,Y € Cr X *Y =Y X. Then Aut(P(St)) ~
Ccy.

Proof: Let ©: Aut(P(St)}) — CF¥ be defined by putting, for ¢ € Aut(P(St)),
O(p) = {plen) < ple1) = - < plen) <---}. If o, ¢ € Aut(P(St)) we have

O(py) = {py(eo) < pyler) < -+ < p¥(en) < -}
= {p((eo)eo) < p(¥(er)er) < -+ < p(¥(en)en) < ---}
= {¥(eo)pleo) < Yler)pler) < -+~ < Plen)plen) < -}
= 0(p) *O(¥).

Since, by the proof of Lemma, 6, every automorphism of P(St) is determined by
the values it takes on the elements of {ex}ren, © is injective; by Lemma 12, ©
is surjective too.

THEOREM 1: If[T] =0 theney < e; < --- < en < --- is the only complete chain
in S7 and Aut(P(St)) = {1}.

Proof: 'The claim about complete chains is equivalent, by Lemma 14, to the
assertion concerning Aut(P(St)). Solet zg <27 < --- <z, < ... be a complete
chain in Sr different from ey < e; < -+ < €, < ---, towards a contradic-
tion. Since (St, <) is a forest, we have dng € N Vn > ny z, # e,. Consider
elements £ = (a1,g1) - (@, gr) € St >ertreny and ¥y = (1,21} - (p, hp) €
St “{ek }ren in canonical forms, with z < y or equivalently (a1, ¢1) - (o, gr) =
(m 1 lzl,h1)---(np | |z|,hp). Since, by Lemma 10, Lev|;(St) is a group, the
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last equality means that we can obtain the word on the left side by modifying
the word on the right using the relations in the group (see [Ko80, page 178]).
Since each relation in Lev|y(St) is of the form (@,1G) = €length(a) = €jz| OT
(e, 9)(a, '} = (v, 99") we conclude that, for all 1 < j < r, o; must have an
extension in {n1,...,7,}. Applying this to the sequence z,, < Tn,41 < -+,
we get a sequence (in fact one for every letter in the canonical form of z,,)
€ng C Eng+1 C - -+ in T such that {J7-

=n,En 18 an infinite branch of 7.

THEOREM 2: If card([T]) = 1, then Aut(P(St)) ~ G°P.

Proof: By Lemma 14 it is enough to prove G =~ Cr.

Let [T] = {¢}. First we claim that, if g < z; <--- <z, < --- is a complete
chain in S, then it is completely determined by its first term zg. To prove this
note that, by the argument used to prove Theorem 1, Vn € N3dg9 € G z,, =
(€ Tn,g). Solet z = (€| |z|,91) and y = (€ | |y|, g2) be such that z < y, that is
(€ 1 |zl,g1) = (€ [ |s],g). This implies gy = gz So3g € G¥n € Nz, = (¢ [ n,g)
and this proves both the claim and the theorem.

THEOREM 3: Let WF and UB be the set of wellfounded trees and the set of trees
with exactly one infinite branch respectively. Then WF x UB and UB x WF are
Borel inseparable in Tr%.

Proof: Let N = NN be the Baire space and let (Fp, F;) € (IIJ(V x M'2))? be a
universal pair for II°(AV2), that is: if Fo, Fy € IJ(N?) there is z € N such that
.7'-0 = (Fo)w and .7‘-1 = (Fl)z

Let A and B be the II predicates in N2 defined by A(z,y) <= -3z €
N (z,y,2) € Fo Az € N (z,y,2) € Fy and B(z,y) < Nz € N (z,y,2) €
FyA—-3ze N (z,y,2) € Fi.

Let Ty be the tree of Fy and T} be the tree of Fi. Then, for z and y in N,
Az, y) <= To(z,y) € WF ATi(z,y) € UB <= (To(z,y),Ti(z,y)) € WF x UB
and B(z,y) <= To(z,y) € UBATi(z,y) € WF < (To(x,y),T1(z,y)) €
UB x WF. So, if WF x UB and UB x WF are Borel separable, so are A and B.
So assume A and B are Borel separated. by C. We shall show that N2\ C is
universal for B(NV), a contradiction.

Fix D € B(N). Then there are closed sets Fo, F1 in N such that for y € N,

yeD = AzeN (y,2) EFoe>M2eN (y,2) e Fo

and
yéD<>2EN (y,2) e L NzeN (y,2) € F1.
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Fix z € N such that Fy = (Fp); and F; = (F});. Then we claim that
Vye N (ye€ D < (z,y) ¢ C). Wehaveindeed y€ D = -y ¢ D = -3z €
N (z,y,2) € Fand alsoy € D = 3z € N (z,y,2) € Fy,so0y € D = (z,y) €
B = (z,y) ¢ C. Conversely, we have y ¢ D = -3z € N (z,y,2) € Fg A3z €
N (z,y,2) € Fi,s0y ¢ D= (r,y) € A= (z,y) € C.

THEOREM 4: Let L = {f, }nen be the language consisting of a countable infinity
of unary function symbols and X be the set of (codes for) countably infinite
structures for L {see [Ke95, 16.C]). Let G and H be countable groups. Then
{z € X1 | Aut(A;) ~ G} and {z € X, | Aut(A,) ~ H} are Borel inseparable.

Proof: Given a countable group G, the map ®g: Tr — X constructed
above, which associates to each T € Tr (the code for) P(SE™"), is Borel, by
standard arguments. As proved in Theorems 1 and 2, VT € Tr((T € WF =
Aut(Ag,ry) = {1}) A (T € UB = Aut(Asy (1)) ~ G)). Let ¥: Tr* — X be
defined by Ay(s,m) = Asg(s) ® As, (1) Where, if B and C are L-structures, we
define B@ C as the structure whose universe is the disjoint union of the universes
B and C of B and C respectively and whose operations { 2%}, cn are defined
by ¥n € N (f£2€ | B) = fBAVu € C f5%u) = uAVv € B f33(v) =
vA (fomga 1 C) = 1.

We have thus Aut{Ays,1)) ~ Aut(As,(s)) X Aut(Ag, (7)) Indeed, if pp and
¢1 are automorphisms of Ag.(s) and Ag, (1) respectively, then their disjoint
union g U ¢; is an automorphism of Ay s, ).

Conversely, let ¢ be an automorphism of Ay (s 7); it is enough to show that
every element v in the universe |Ag(s)| of Ass(s) is sent by ¥ to an ele-
ment in |Agg(s)| and similarly for |Ag, (| Assume, towards a contradic-
tion, ¥(u) € |Ag,(r)]- Then Vn € N f,':“”s’T"z/)(u) = 1)(u); so this means
that Vvn € N ff *6)(y) = u. This can happen only if u is the eg-element in
As;(s) and P(u) is the eg-element in Ag (1), since every element of the struc-
ture Ag(s), except possibly the ep-element, is moved by something, and the
same is true for Ag, (1)

For n € N let e;, be the e,-element in Ag(s) and e, the e,-element in Ag , (7).
So ¥(e}) € |Ass(s)- Let m € N be such that f,':%(s) is the operation corre-
sponding to the translation by e;. We have f; > Aues, T’w( =9 fA‘I"S M(ey) =
Pley) = e§ € |Asy ()| but, by the definition of f;, AvE D) this would imply
P(el) € [Agy(m)l-

A similar argument works for showing that ¥ (A, ()|) € [As, (|-
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Then (S,T) € UB x WF = Aut(¥(S,T)) ~ G and (S,T) € WF x UB =
Aut(¥(S,T)) ~ H. Now apply Theorem 3.

THEOREM 5: Let L = {f.}nen be a language consisting of a countable infinity of
unary function symbols. Let G and H be countable groups and let o be a sentence
of L, satisfied by all countably infinite structures for L. whose automorphism
group is isomorphic to G. Then there is a countably infinite structure for L whose
automorphism group is isomorphic to H satisfying o.

Proof: By [Ke95, proposition 16.7] and Theorem 4.

For G a countable group, we can investigate further the properties of the Borel
assignment T € Tr — P{St) using the following three results, which extend and
complement Theorems 1 and 2.

THEOREM 6: Let card([T]) = m € N and let G,,, be the free sum of m copies of
G. Then the group of automorphisms of P(St) is isomorphic to G2P.

Proof: Since the cases m = 0 and m = 1 have already been considered in
Theorems 1 and 2, we may assume m > 2. For the sake of definiteness, for
1 <37 <m,let Gx{j} be the j-th copy of G in the sum. By Lemma 14 it is
enough to prove that Cp = G,. Let [T} = {&1,...,&,} and let ng € N be such
that V&€ € [T) Ngpn, N {T] = {¢}, where V¢t € N<“ N, = {( e N |t C (}. We
claim that every complete chain zg < z1 < -+ < z, < --- in S7 is completely
determined by z,,. Indeed, by an argument similar to the one used in the proofs
of Theorems 1 and 2, z,,, must be of the form ., = (§;, | 70,91) --- (§;, | n0> gr)»
with g;, # 1¢ and j; # jiy1 (for r = 0, Zn, = en,). All such forms are possible,
since they admit the extensions (§;, | n,g1)--- (&, | n,gr) for n € N to obtain
a complete chain and they are all distinct since at level np all distinct infinite
branches are already isolated. So, if z = (&, I [z|,h1)--- (&, | |z|,hp) and
y = (&, 1 |yl k1) (&, | lyl,kq) are in canonical form, with ny < |z| < |y
and © < , then (&, 1 Jol,ha)-+ (&, [ folhp) = (&, 1 lalkn) - (&, 1 Il ks
since the right hand side is in canonical form too (the infinite branches being
already isolated at level |z|), we get p = q, &, = &, hu = ku. The theorem is
proved noting that the set of all possible canonical forms for z,, is in isomorphic

correspondence with G, via (&5, [ o, 91) -+~ (&5, [ 70, 97) = (91, 51) =+ (grs Jr)-

THEOREM 7: Let [T be infinite and assume 3ng € N V§ € [T] Ngpn, N [T] = {€}
(this implies card([T]) = Vo). If G, is the free sum of a countable infinity of

isomorphic copies of G, then the group of automorphisms of P(St) is isomorphic
to G2P.



Vol. 117, 2000 COUNTABLE STRUCTURES 117

Proof: 1t is enough to prove Cr ~ G,. For m € N, let G x {m} be the m-th
copy of G in the sum G,, and let [T] = {{x}ken. By the same argument used
in the proof of Theorem 6, every complete chain zg < 1 < -+ < z, < ---
in St is completely determined by its term z,,. Such a term has the form
(&, Tno,91) - (&, | no,gr) (for r = 0 this is ey,), with ¢g; # 1¢ and j; # jit1-
This element corresponds to (g1,71) - - (gr, jr) in the isomorphism with G,,.

THEOREM 8: Let G be nontrivial and assume ~3ng € N V¢ € [T] Nepgo N [T] =

{€} (this happens for sure if card([T]) = 2%° but it is also compatible with
card([T]) = Xg). Then card(Aut(P(Sr))) = 2%o.

Proof:  Since card(Aut(P(St))) < 2% it is enough to find an injection C:
P(N) — Cr.

We claim that there exist an increasing sequence of natural numbers mgy <
my < - < my, < --- and sets {&e}ken C [T] and {&} }ken C (T], where Vk,
K eN(k#£K = & # & N, # &) AN # /), with the property that
Vn € N{&, [ mp =&, | maAén(my) # &, (my)). This can be justified as follows:
if T has a non-isolated branch £, than let &y, £5,£1,&],. .. be infinite branches
stemming, in that order, from &; otherwise let & and &} be infinite branches
splitting at some level mg € N. Let hg € N be such that both & and &) are
isolated at level hgy and let & and &; be infinite branches splitting at some level
my > hg and so on.

Let A = {jo,j1,.--} be a subset of N, where k < k' = j < jg/; we describe
the construction of an infinite chain C(A) = {zg < ©; < -+ < 2, < ---} of
Sp. Let g € G~{lg}. For 0 < n < mj, put z, = ep; for my, < n < my, let
Ty = (50 [ 1,9)(&, [, g~ 1); for mj, <n < my, let

Tn = (&0 1 )&, 1107 T, 9)(E, Tnyg™h)

and so on. If A is finite, when A has no elements left simply proceed extending
the chain trivially (in particular C(@) = {eg < €3 <--+ <ep, <---}).

LEMMA 15: Let X and Y be Polish spaces, B € B(X xY) and

A={z e X |0+#card(B;) < Ng}.
Then A € T}(X) and there is a function f: A — YN which is II;-measurable
(as in [Ke95, 36.F]) such that Vz € A B, = {f(z)(n)}nen-

Proof: By [Ke95, exercise 39.23] (note that the proof is in ZFC), A* =
{z € X | card(B,) < No} is coanalytic and there is a function f*: A* — YN
which is IT}-measurable and Yz € A* B, C {f*(z)(n)}nen.
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Now Vz € X (x € A <= z € A*A3n € N (z,f*(z)(n)) € B), so A is
coanalytic too. Let P = {(z,n) € X xN |z € AA (z, f*(z)(n)) € B}, so that
P is coanalytic and Vz € X (z € A < 3n € N P(z,n)). By the number
uniformization property (see [Ke95, definition 22.14 and theorem 35.1]), there is
h: A — N which is II}-measurable and Yz € A P(z, h(z)). Forz € Aandn € N
put now

[P@® (@))€ B,
fa)n) = {f*(x)(h(w)) £ (z, f*(z)(n)) ¢ B.

Then f is II}-measurable and Vz € A B, = {f(z)(n) }nen

THEOREM 9: Let L be any countable language and G be a countable group.
Then {z € X | Aut(A;) ~ G} € I} (X,).

Proof: Consider the subset F' of X X S, defined by F(z,g) <= g € Aut(A;).
It is closed and moreover Vz € X, F, = Aut(A;). Let

My, = {z € X | card(Aut(A,)) < Ro} € I} (X ).

Let f: My, — SN be a IIj-measurable function such that Yz € My, Fy =
{f(z)(n )}neN, as in Lemma 15. We have Vz € X, (Aut(4,) ~ G <= z €
My, A {f(2)}(n) }nen ~ G), so it is enough to show that the second condition in
the conjunctlon is coanalytic.

Let Ly = {-} be a language consisting of a binary function symbol, considered
as the language for groups, and let Yz, = 2V x NY¥* be the set of (codes of)
countable structures for Lo (the factor 2N allows to consider structures whose
universe is a subset of N, in particular finite structures). Notice that there is a
Borel function g : SY — Y7, such that, if z € SY is such that {2(n)}nen is a
subgroup of So., then Ag(,) =~ {2(n)}nen.

Then gf: My, — Yz, is IIj-measurable and Vz € My, Agf(s) ~ Aut(A).
Since {y € Y, | Ay ~ G} is Borel in Y7, (being an isomorphism class) we have
that {z € My, | Ags) = G} = {x € My, | {f(2)(n)}nen = G} is coanalytic as
required.

THEOREM 10: Let L = {fu}nen be a language consisting of a countable
infinity of unary function symbols and let G be a countable group. Then
{z € X1 | Aut(A;) ~ G} is complete coanalytic in X7,.

Proof: We will define a Borel function I': Tr — X, such that VT € Tr
((T € WF = Aut(Ar(r)) ~ G)A(T € IF = card(Aut(Ar(r))) = 2%°)). This will
be the composition I' = =6 where $5: Tr —» X, assigns to T (the code for)
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P(SE”), while Z: Tr — Tr and ©: Tr — Tr are defined as follows. For T € Tr
put t € ©(T) if, and only if, the sequence (¢(1),¢(3),¢(5), ..., t(length(t} — 2))
or (t(1),¢(3),t(5),...t(length(t) — 1) — depending on whether length(t) is odd
or even — is in T' (thus ©(T') contains all sequences of length 1; the sequences
(m,n) and (m,n,p) are in O(T) just in case (n) € T and so on). So © sends
wellfounded trees to wellfounded trees (since £ € [O(T)] = (£(1),£(3),&4(5),...) €
[T]) and ill founded trees in trees with 2% infinite branches (since ¢ € [T] =
(mg,£(0),m1,£(1),...) € [O(T)] for every (mg,my,...) € N). For T € Tr, =
simply adds one infinite branch; for instance let

(1}

(T) = {(t(0) + 1,£(1) + 1,..., t(length(t) — 1) + D }ter U {0" }nen-

Thus, if 7' € WF then ZO(T) € UB and Aut(Ap(ry) ~ G; if T € IF we have
card(2O(T)) = card(Aut(Ap(r))) = 2%°.

By the way, note that the function © witnesses that {T' € Tr | card([T]) = 2%}
is ©]-hard and Borel inseparable from WF.

Using the construction given, for instance, in [Ho93, pages 228-229], we can
associate, in a Borel way, to each element x € X, an element 2’ € X, where
L’ = {R} is a language consisting of one binary relation symbol, in such a way
that Vz,y € X1 (A; ~ Ay <= Ay ~ Ay) and Vz € X Aut(A;) ~ Aut(Ay).
Moreover, for each z € X, the structure A, is a graph. We can thus translate
our results in the language L’ and get the following theorems about the class
G C X+ of (codes for) countably infinjte graphs.

THEOREM 4': Let G and H be countable groups. Then {z € G | Aut(A,) ~ G}
and {z € G | Aut(A,) ~ H} are Borel inseparable.

THEOREM 5': Let G and H be countable groups and let o be a sentence of
L,, ., satisfied by all countably infinite graphs whose automorphism group is
isomorphic to G. Then there is a countably infinite graph whose automorphism
group is isomorphic to H satisfying o.

THEOREM 10’: Let G be a countable group. Then {z € G | Aut(A;) ~ G} and
{z € X1/ | Aut(A;) ~ G} are complete coanalytic.

Remark: We have obtained a family of complete coanalytic sets in a Polish
space which are pairwise disjoint and Borel inseparable. Notice that this is a
large family of such sets, being indexed by the class of countable groups up to
isomorphism and the class of groups being Borel complete by [Me81].
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A general procedure for producing pairs of disjoint Borel inseparable coanalytic
sets can be found in [Be86].

The results of Theorems 4 and 5 hold for other classes of structures, in addition
to graphs, which Theorems 4’ and 5’ were stated for. Indeed, if £ is a countable
language containing a relation or function symbol of arity at least 2, we can
assign, in a continuous way, to each element of G an element of X, preserving
the isomorphism relation and in such a way that the automorphism group of the
graph is equal to the automorphism group of the structure we associate to it.

It could be interesting to investigate further which classes C of countable
structures, closed under isomorphism, in a given language, satisfy the analogs
of Theorems 4’ and 5’. For instance, if C' has the reconstruction property (that
is VA,B € C (Aut(A) ~ Aut(B) = A ~ B)) this is not the case. For example,
let £ = {+, fg}qco be the language for rational vector spaces and let C C X
be the class of countable rational vector spaces. Then C has the reconstruction
property.

3. Some results about Z,

We cannot extend the results of Theorems 10 and 10’ to uncountable groups;
we can in fact prove that, for p a prime number, {z € X, | Aut(A;) ~ ZJ} is
M} &X}-complete. For this we need to simplify the above construction for the
case when our group G is commutative.

To this aim we first observe — as arose in a discussion with S. Solecki — that
if we are just interested in dealing with Abelian groups we can use the following
structures to obtain the results given above.

Let G be a countable Abelian group (which we deal with in additive notation)
and let Q% (denoted Qr in the sequel if unambiguous) be the semigroup obtained
by S’? adding commutativity, that is adding the relations

(£) Ve, o €TVg,g €G (aag)(a,’g’) = (alag’)(avg)
in the presentation of the semigroup. We point out that this is not a particular
case of the above construction for the case of G Abelian, since — even in that
case — the semigroup St is not commutative (except when T' does not contain
pairs of incompatible elements or G = {1g}).

We can view Qr as the set of all functions f from |J], _,Levm(T) (for some
n € N) in G with finite support, such that Va € T Vk > length(a)f(a) =
ZﬁeLer(T)yagﬂf(ﬂ). For n € N, the element e, is the function from
U _oLevim (T) with constant value Og. The product of f and f' in Qr is thus
defined first restricting them to the intersection of domains (one included in the
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other) and then adding pointwise the values of f and f’. Since every relation in
St still holds in Qr, Qr satisfies requirements (1)-(5) and the lemmas following
them, and also, with the same proofs, the stated properties of St, except that
now, thanks to commutativity of G and Qr, we have C¥ = Cr, G°? = G and
we should substitute, in Theorem 6, G, and GZ with G™ and, in Theorem 7,
G, and G with G<“.

Fix now a prime number p and let G = Z,; we obtain thus the semigroup Q?”
and the structure P(Q?”) (for p = 2 this is the structure appearing in [Ma81]
and [Mo093]).

Particularizing our results to this case we have the following.

THEOREM 1*: If [T] = 0 then ey < €1 < -+ < e, < --- Is the only complete
chain in Q?" and Aut(P(Q?”)) = {1}.

THEOREM 6*: Let card([T]) = m € N*. Then Aut(P(Q%f’)) ~Zy.

THEOREM 7*: Let [T] be infinite and assume 3ng € NV € [T} Ngp, V(T = {£}.
Then Aut(P(Q%)) =~ Z5¥.

We have now an improved analog of Theorem 8.

THEOREM 8*%: Assume —3ng € NVE € [T] Nejn, N[T] = {€}. Then Aut(P(Q5?))
~ 7N,
14

Proof: As in Theorem 8 we can prove card(Aut(P(QéZF”))) = 2% Since, by
Lemma 14, Aut(P(Q?”)) ~ (C'r, each element of Aut(P(Q?”)) has order p and
Aut(P(Qr_Zr’”)) is commutative; so we deduce that Aut(P( ,_7;”)) is a vector space

on Z, of dimension 2%, thus it is isomorphic (as a vector space and so as a group)
to Z).

LEMMA 16: {T € Tr | =3ng € NVE € [T]| Netn, N[T] = {£}} is complete analytic
in Tr.

Proof:  First, to see that {T" € Tr | ~3ng € N V€ € [T] New, N[T] = {€}} is
analytic, we have, dealing with the complement, VT € Tr(3ng e NVE € N (€ €
[T] = Nepno NI ={€}) <= I e NVEEN (VmeNEImeT =>Vnpe
N (Vk <ng n(k) =€(k) =>VkeNn(k)=€k)vVIkeNn | k¢T)).

To prove the hardness part we reduce IF to our set. For T € Tr let T’ be
the tree consisting of an infinite branch {0"},en with a copy of T attached to
each node 0" of that infinite branch. The assignment T' — T’ is Borel and for
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T € WF, T’ has a unique infinite branch, while, for T € IF, the branch {0"},en
is non-isolated in 7", thus T” is in the set we are interested in.

Another reduction doing the job is the function © described in the proof of
Theorem 10.

THEOREM 11: For any countable language £ and prime number p we have
{z € Xc | Aut(A,) ~ ZN} € M&B(XL).

Proof: Since the automorphism group of a structure in X is a closed subset of
Seo, it satisfies the continuum hypothesis. So, appealing to the same argument
used at the end of the proof of Theorem 8* Vz € X, (Aut(A4;) ~ fo =
Vg € Soo (g € Aut(A;) = g° = id) AVg € Soo Vh € Soo (9 € Aut(Az) Ah €
Aut(A;) = gh = hg) A card(Aut(Az)) > Np). Since F = {(z,9) € Xz X Soo |
g € Aut(A4;)} € MY (X, X Sa), the first and second condition in the preceding
conjunction are coanalytic, while the third is analytic.

THEOREM 12: Let L = {f,}nen be a language consisting of a countable infinity
of unary function symbols. Then {z € X | Aut(A,) ~ Z3} is M} &X}-complete
in XL.

Proof: Let C = {T € Tr | ~3ng € NV € [T] N¢pn, N[T] = {£}}. Since C
is complete analytic by lemma 16, Z = WF x C is H}&Ei-complete. So it is
enough to Borel reduce it to {z € X1 | Aut(A,) ~ Z}}.

Let G be a non-Abelian group and let ®5: Tr — X be defined as in the
proof of Theorem 4. Let ®,: Tr — X be a Borel map assigning to each
T € Tr a code for P(Q%). Finally, let ¥: Tr> — X1, be defined by Ay(r,v) =
Ass (1) ® As,(v), where the direct sum @ is defined as in the proof of Theorem
4. Again we have Aut(Ay(r,vy) =~ Aut(P(S¥)) x Aut(P(Q%,”)).

We claim that VT,V € Tr(Z(T,V) <= Aut(Ay(r,v)) ~ Z)). Indeed, if
Z(T,V) holds, then we have Aut(P(S§)) = {1}, Aut(P(Q%¥)) ~ ZV, so
Aut(Agr,vy) =~ Zg’. If Z(T,V) fails, there are two cases: T ¢ WF or
T € WEAV ¢ C. In the first case Aut(P(S$)) contains a subgroup isomor-
phic to G, so Aut(Ay(r,v)) is not Abelian, containing a subgroup isomorphic to
Aut(P(S£)), and cannot be isomorphic to Zﬁ. In the second case Aut(Ag(r,v))
o Aut(P(Q?.”)) # Z§ by Theorems 1*, 6* and 7*.

THEOREM 12': Let I' = {R} be a language consisting of one binary
relation symbol and let G C X, be the class of (codes for) graphs. Then
{z € G| Aut(A;) ~ Z)} and {z € X1/ | Aut(A;) ~ Zh} are M &2} -complete.
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Proof: By Theorem 12 and the reduction discussed after Theorem 10.

Definition: For n € N let B, = {T € Tr | card([T]) = n} (so, in particular,
By = WF and By = UB). Let also B, = {T € Tr | card([T]) = RoAdng e NV€ €
[T] NetnoN[T] = {€}} and Boo = {T € Tr | ~Ing € NVE € [T] Nepn,N[T] = {€}}.

LEMMA 17: For A € w+ 1, B) and B, are Borel inseparable in Tt.

Proof: In the remark at the very end of the proof of Theorem 10, we observed
the Borel inseparability of WF and {T € Tr | card([T]) = 2%}, which implies
the Borel inseparability of WF and B,,. Applying a Borel function Tr — Tr
which adds to each tree XA infinite branches isolated at the root, we get the desired
result.

For the case of the group Z, we can thus extend a bit the inseparability results
of Theorems 4, 5, 4’ and 5’ as follows.

THEOREM 13: Let L = {f,}nen be a language consisting of a countable infinity
of unary function symbols and put Vm € N A, = {z € X, | Aut(A;) = Z7'},
Ay = {z € X1 | Aut(A;) ~ Z5¥}, Ao = {z € X1 | Aut(A;) ~ Z)'}. Then for
A€w+1, Ay and A, are Borel inseparable.

THEOREM 14: Let L = {f,}nen be a language consisting of a countable infinity
of unary function symbols. Fix A € w+1 and let o be an L, -sentence satisfied
by all countably infinite structures whose group of automorphisms is isomorphic
to Zg if A € N and to Z;“’ if A = w. Then there is a countably infinite structure
for L whose automorphism group is isomorphic to Z§ satisfying o (in addition to
a countable infinite structure for every abstract countable group, as by theorem

5).

THEOREM 13": Let L' = {R} be a language consisting of one binary relation
symbol and let G C X be the class of (codes for) countably infinite graphs. Put
Vm e N AT = {z € Xp | Aut(A;) = Z'}, AY = {2z € X1 | Aut(Ag) ~ Z59},

°={z € X | Aut(A;) 2 Z}} and VA € w+1U {00} A} = A} NG. Then for
je{l,2} and A e w+1, A? and A$° are Borel inseparable.

THEOREM 14': Let L’ = {R} be a language consisting of one binary relation
symbol. Let A € w+ 1 and let o be an L, ,-sentence satisfied by all countably
infinite graphs whose automorphism group is isomorphic to Z,),‘ if A € N and to
Z;“’ if A = w. Then there is a countably infinite graph whose automorphism
group is isomorphic to Z§ satisfying o.
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